Hysteresis of the Contact Angle of a Meniscus Inside a Capillary with Smooth, Homogeneous Solid Walls.

نویسندگان

  • Igor V Kuchin
  • Victor M Starov
چکیده

A theory of contact angle hysteresis of a meniscus inside thin capillaries with smooth, homogeneous solid walls is developed in terms of surface forces (disjoining/conjoining pressure isotherm) using a quasi-equilibrium approach. The disjoining/conjoining pressure isotherm includes electrostatic, intermolecular, and structural components. The values of the static receding θr, advancing θa, and equilibrium θe contact angles in thin capillaries were calculated on the basis of the shape of the disjoining/conjoining pressure isotherm. It was shown that both advancing and receding contact angles depend on the capillary radius. The suggested mechanism of the contact angle hysteresis has a direct experimental confirmation: the process of receding is accompanied by the formation of thick β-films on the capillary walls. The effect of the transition from partial to complete wetting in thin capillaries is predicted and analyzed. This effect takes place in very thin capillaries, when the receding contact angle decreases to zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wetting of Doubly Periodic Rough Surfaces in Wenzel’s Regime

In this work we present preliminary results from our numerical study of the shapes of a liquid meniscus in contact with doubly sinusoidal rough surfaces in Wenzel’s wetting regime. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes for a broad interval of surface roughness factors. The contact angle hysteresis is obtained when the three-phase con...

متن کامل

High Reynolds number oscillating contact lines

For the eventual use as regards wave generation and damping, we investigate oscillating contact lines on vertical walls. Stainless steel is used rather than the glass of Ting and Perlin [J. Fluid Mech. 295 (1995) 263] for the vertically sinusoidally oscillating plate over a large range of Reynolds numbers. The non-wetting stainless steel minimizes the static meniscus ignored in our analysis. Ot...

متن کامل

Invariance of the solid-liquid interfacial energy in electrowetting probed via capillary condensation.

Capillary condensation is employed to probe the solid-liquid interfacial energy in electrowetting on dielectric. The height of an annular water meniscus formed via capillary condensation inside the surface force apparatus is measured as a function of the potential applied across the meniscus and the dielectric stack where the meniscus is formed. According to the Kelvin equation, a decrease in t...

متن کامل

Contact angle hysteresis: a different view and a trivial recipe for low hysteresis hydrophobic surfaces.

Contact angle hysteresis is addressed from two perspectives. The first is an analysis of the events that occur during motion of droplets on superhydrophobic surfaces. Hysteresis is discussed in terms of receding contact line pinning and the tensile failure of capillary bridges. The sign of the curvature of the solid surface is implicated as playing a key role. The second is the report of a new ...

متن کامل

Capillary Hysteresis in Neutrally Wettable Fibrous Media: A Pore Network Study of a Fuel Cell Electrode

Hysteresis in the saturation versus capillary pressure curves of neutrally wettable fibrous media was simulated with a random pore network model using a Voronoi diagram approach. The network was calibrated to fit experimental air-water capillary pressure data collected for carbon fibre paper commonly used as a gas diffusion layer in fuel cells. These materials exhibit unusually strong capillary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 32 21  شماره 

صفحات  -

تاریخ انتشار 2016